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The Human Lung Mast Cell

by Stephen I. Wasserman*

Mast cells are present in human lung tissue, pulmonary epithelium, and free in the bronchial lumen. By
virtue of their location and their possession of specific receptors for IgE and complement fragments, these
cells are sentinel cells in host defense. The preformed granolar mediators and newly generated fipid
mediators liberated upon activation of mast cetls by a variety of secretagogues supply potent vasoactive—
spasmogenic mediators, chemotactic factors, active enzymes, and proteoglycans to the local environment.
These factors acting together induce an immediate response manifest as edema, smooth muscle constriction,
mucus production, and cough. Later these mediators and those provided from plasma and leukocytes
generate a tissue infiltrate of inflammatory cells and more prolonged vasoactive-bronchospastic responses.
Acute and prolonged responses may he homeostatic and provide for defense of the host, but if excessive in
degree or duration may provide a chronic inflammatory substrate upon which such disorders as asthma

and pulmonary fibrosis may ensue.

Introduction

The mast cell was identified in 1877 by Ehrlich as a
cell capable of binding basic dyes and of staining
metachromatically (7). Evidence accumulated in recent
years suggests the mast cell has the capacity to
profoundly affect the microenvironment in response to
its interaction with a wide variety of potentially toxic
materials. Although the precise role of this eell remains
an issue of intense interest, the knowledge of the
funetional capabilities and constituents of the mast cell
provide the rationale for assigning it a role in pulmonary
defense and pathobiology.

Location, Developmentand Structure
of Mast Cells

Mast cells are found in lung tissue in concentrations
of 1-10 x 10° cells/g. (2). They are prominent in loose
and dense connective tissues (3) such as the pleura,
peribronchial regions and aiveolar septa adjacent to
nerves and blood vessels, particularly small arterioles
and venules, and in upper and lower respiratory epithe-
Iium (4) and free in the bronchial lumen (5,6). Increased
numbers of mast cells have been ideuntified in humans in
conditions of excessive pulmonary blood flow and chronic
left ventricular decompensation (7), and in association
with puimonary fibrosis (§}, whereas in chronic hypoxic
states proliferation of magt cells has been noted in rats
.
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Although mast cells are prominent in bone marrow
where their number correlates with that of lymphocytes
{10} their origin is from pleuripotential stem cells. Mast
cells develop in long-term tissue cultures of lymphoid
cells from thymus, spleen or lymph nodes on fibroblast
feeder layers (11,12). In addition, monelayers of rat
thymus, rat embryo or mesenchymal cells from rat
retina may develop mast cells in the absence of
fibroblasts, suggesting that mast cells develop from a
widespread primitive mesenchymal precursor. Regula-
tion of mast cell proliferation may thus be regulated by
both neurvectodermal factors (13) and T-lymphocytes
(12). In rodents, mast cells divide and increase in
number throughout fetal and neonatal life (1), but
mitoses are rare later (15). It is uncertain how mast
cells come to be situated in the lung at various sites at
which they can be found; presumably, precursor mesen-
chymal mastoblasts differentiate locally, however, migra-
tion of mast cells through tissue may oceur in some
disorders (16). Individual mast cells are long-lived,
persisting for up to one-third of the total life span in
rats, and the size of the mast cell increases as the
animal ages (17).

Mast ceils are large, measuring 16 to 15 wm in
diameter with the usual cellular organelles including a
nucleus, one or two nucleoli, mitochondria, Golgi
apparatus, ribosomes and endoplasmic reticulum. In
addition, these cells possess a ruffled membrane (18,19)
and 50 to 200 individually membrane bound seeretory
granules (0.5-0.7 pm diameter) to which, in the human,
are apposed numerous intermediate-sized filaments (20).
The secretory granules of the human mast cell possess a
definite subgranular architecture dominated by repeat-
ing subunits of electron density 750 and 1500 mu apart
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which give the granules a scroll or whorl-like appear-
ance (20-22). Microtubules have not been identified in
human mast cells.

Activation of Mast Cells

A variety of agents have been demonstrated to cause
mast cells to release their granules, as defined histologi-
cally or by the measurement in tissue or fluid of mast
cell constituents. Mast cell degranulation in cells of
tissues has been induced by IgE-dependent mecha-
nisms and, in addition, by divalent cation ionophores
(23,24), highly charged amines (25), ATP (26), ana-
phylatoxins C3a and Cba (27), enzymes such as chy-
motrypsin and phospholipases {28), divalent cations (29),
cationic peptides and enzymes from inflammatory leuko-
cytes (30}, drugs such as morphine and curare (31),
endotoxin (32), fragments of ACTH (33), synthetic
peptide chemotactic factors, complex carbohydrates
(34), and environmental pollutants such as NO, (35).

Activation of mast cells is thought to occur in a
non-cytolytic secretory process induced by binding of
activating substances to specific receptors on the mast
cell membrane. This process has been most extensively
studied in the rat mast cell which can be purified to
homogeneity. In this cell, bridging of two cell bound Igk
molecules by specific antigen or by antibody to either
IgE or to the cell membrane receptor for IgE is
sufficient to induce cell activation (36). Similiar mecha-
nisms dependent upon IgE have been demonstrated to
activate dispersed human lung cells in suspension (37)
or enriched populations of human lung mast cells (2,
20)). The action of other moieties such as C3a, C5a, and
chemotactic peptides are also presumed to be conse-
quent to their ability to bind to and alter specific
membrane receptors. Following binding there is an
opening of membrane channels for Ca®¥ions, and an
influx of this ion occurs, perhaps in exchange for
monovalent cations. Inhibition of ealeium flux or
removal of this ion from the medium prevents degranu-
lation. In assoeiation with calctum fluxes, there is
intracellular granule swelling and dissolution accom-
panied by intermediate filament organization at the
granule periphery (20), granule to granule membrane
fusion, fusion of granular to plasma membranes (38),
and eventually the development of membrane discon-
tinuities exposing the partially solubilized granules to
cation exchange (39).

Biochemical Regulation of Mast Cell
Activation

The biochemsitry of mast cell activation has been
derived primarily from studies with rat mast cells or
from mast celi rich tissues in the human including lung
fragments (40} or cells (§7), partially purified human
lung mast cells (2), nasal polyps (47), and skin (42).

While mixed cell sources can provide insight into the
overall effects of mast cell activation the precise role of
the mast cell requires study of nearly pure cell
populations. As this has only been achieved to date
utilizing rat mast cells the insights gained from this
medel will be presented and, where relevant, the
findings in human systems deseribed.

The regulation of mast cell activation was shown to
involve the nucleotide cyclic 8'5'-adenocsine monophos-
phate (cAMP) more than 10 years ago (40). A series of
investigations followed which demonstrated that agents
which elevated levels of cAMP (PGE,, B-adrenergic
agonists, cholrea toxin, dibutyl cAMP) or prevented its
degredation (methylxanthine) inhibited mediator re-
lease in lung cells of tissues; whereas agents which
lowered the concentration of the nucleotide (PGFoa,
alpha-adrenergic agonists) augumented mediator re-
lease (43). However, subsequent studies employing
purified rat mast cells provided data which cast the role
of cAMP into some doubt. Thus some mast cell secreta-
gogues increased, while other decreased cAMP levels
(44). In addition, theophylline inhibited mediator re-
lease even at concentrations insufficient to prevent
cAMP degradation, while PGD, and 3-isobutyl-1-
methylxanthine (IBMX) enhanced mast cell ¢cAMP
accumulation, and the later agent even augumented
mediator release (45). These contradictory findings
have been partially clarified by the finding that activa-
tion of rat mast cells leads to two sequential elevations
in cAMP, the first occurring 15-30 sec after stimulation,
and the second 90-220 sec later. The second peak can be
inhibited by indemethacin and is secondary to mast cell
released mediators, whereas the first is intimately
associated with the secretory process (46). The finding
that adenosine enhanced histamine release from rat
mast celis led to the finding that analogs of this
nuelectide were capable of altering the early peak in
¢cAMP. Thus purine modified analogs of adenosine
enhance immunologically indueed early inereases in cell
cAMP and enhance histamine release, whereas ribose
modified analogs inhibited both phenomena (47).

Consequent to ¢cAMP elevation is the utilization of a
cAMP dependent protein kinase (48), phosphorylation
of intracellular proteins {(49) and granuie release. Taken
together these data suggest that mast cell activation
and mediator release is dependent upon activation of
adenylate cyclase and increase in cell cAME Agents
which act to augment cyclic AMP and also inhibit
mediator release presumably do so by affecting concen-
trations of key intermediates (such as the cAMP depen-
dent protein kinase) in a manner which prevents their
effective utilization during cell activation by secre-
tagogues.

A parallel event in mast cell activation is that of lipid
methylation. Within seconds of activation, three methyl
groups may be transferred to phosphatidylethanolamine
to generate phosphatidyleholine. The initial methyla-
tion occurs at the inner aspect of the plasma membrane,
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whereas the latter two are at the outer membrane
surface. Agents capable of inhibiting methylation in-
hibit mediator release and also block Ca® ™ uptake by the
activated cells (50). Lipid methylation is associated with
increases in membrane fluidity and perhaps in regulat-
ing activity of a putative caleium channel (51). The
calcium ionophore A23187 does not require a calcium
channel as it directly induces Ca®* influx, and this
secretagogue does not augment lipid methylation (52).
It is of great interest that inhibiters of lipid methylation
prevent mediator release but do not alter early cAMP
increases, and conversely inhibitors of early ¢AMP
accumulation prevent mediator release, but not lipid
methylation (53).

Other lipid alterations also occur conseguent to mast
cell activation. Diacylglycerol, a potent fusogen, is
generated following the action of a putative phos-
pholipase C upon membrane phospholipids (54) and
there are rapid increases in turnover of phosphatidie
acid, arachidonie acid, phosphatidyl inositol and phos-
phatidyl ethanolamine. The liberation of arachidonic
acid and its metabolism appears critical to degranu-
lation. Indomethacin, which inhibits the cyclooxygenase
pathway of arachidonic acid metabolism may enhance
mediator release, whereas inhibitors of both lipoxy-
genase and cyclooxygenase dependent pathways of
arachidonate metabolism inhibit mediator release.
Hydroperoxides of various lipids including those of
arachidonate enhance mast cell mediator release (55).
Arachidonie acid may be liberated from mast cell lipids
by phospholipase A2 active on intact phospholipids or
by diacylglycerol lipase action on diacylglycerol.

Other steps in cell activation have been postulated.
The role of microtubules, microfilaments, and other
cytoskeletal elements have been proposed. Direct evi-
dence for the existence of intermediate filaments have
been obtained in human lung mast cells (20), and these
structures become closely associated with the cell and
gramile membrane during activation. Microfilament
participation has been suggested by the inhibitory
effect on mediator release of eytochalasin B, but the
concentrations required to demonstrate this effect are
far in excess of those needed to affect microfilaments in
other tissues (56). The participation of a serine esterase
in cell activation has been postulated (57) and ques-
tioned (58).

Mast Cell Mediators

The activation of mast cells leads to the release of
preformed granule-associated molecules and to the
generation and release of other, unstored, materials. In
toto, these complex, biologically active molecules
termed mediators may best be classified as to their
biological effects. Thus, mast cell related materials with
vasoactive, smooth muscle reactive properties (Table 1),
with chemotactic potential (Table 2) as well as active

enzymes and structural proteoglycans (Table 3) have
heen recognized.

Mediators Actingon Smooth Muscle
and Vasculature

Histamine

The first mast cell mediator identified, histamine
(B-imidazolylethylamine), is formed by the action of
histadine decarboxylase upon the amino acid histidine.
The amine, in amounts of 10 to 30 pg/10° cells in the rat
(59) and 1 to 5.5 pg/10° mast cells in the human (2), is
stored preformed in the gramules where it is bound to
proteoglycan, or protein carboxyl residues. Histamine
content of human lung approximates 10 to 20 pg/g.
Catabolism of histamine proceeds via two pathways (6()
both active in lung (61). The majority (46-55%) 1s
transformed to 3-methylhistamine by the action of
imidazole-N-methyl transferase. A remaining 25-34 per-
cent of histamine is oxidized to imidazole acetic acid,
and its riboside, by the action of diamine oxidase. The
remainder, 2 to 3%, is excreted unchanged in the urine.

Histamine induces contraction of airway smeoth mus-
cle (62), resulting in increased resistence and diminished
compliance (63-65). The amine also causes increased
mucous secretion, pulmonary vasoconstriction and induces
bronchial venular leakage resulting in pulmonary edema
(66). Transient increases in heart rate and cardiac
output, as well as slowed A-V conduction, follow its
injection (67,68).

Histamine exerts its effects on lung by interacting
with two cell membrane-associated receptors termed
H1 and H2 (69). The interaction of histamine with those
receptors has been assessed employing analogs with
selective H1 (2-methylhistamine) or H2 (4-methylhista-
mine} action, or by the use of specific Hl1 or H2
inhibitors. H1 blocking agents comprise the so-called
classical antihistamines whereas the H2 inhibitors include
only the closely related metiamide, burimimide and
cimetidine. Both H1 and H2 receptors are present in
human lung (70), and analysis of the role of each in
the effect of histamine indicates that pulmonary vaso-
constriction, bronchial smooth muscle contraction, and
systemie vasodepression are H1 effects (67), whereas
H2 activation iz associated with pulmonary vaso-
depression, augmentation in cardiac output and heart
rate (67, and inhibition of anaphylaxis (7). The latter
effect is thought secondary to histamine indueed inhibi-
tion of mediator release secondary to cAMP elevation
(72,73). Histamine also mediates the wheal and flare
response in skin due to its ability to cause venular
disconnections (74), and causes pain and itch (75).
Cutaneous edema resists H1 and H2 blockage and may
reflect histamine indueed PGEsx generation (76). In
addition, histamine can modify the action of a variety of
inflammatory cells. Thus by H2 induced accumulations
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Table 1. Vasoactive mediators.

Structural
Mediator characteristics Function Inhibition Inactivation
Histamine B-1midazolyl- Contraction of smooth muscle H, and H, Histamine
{mast cells) ethylamine, Inerease of vaseular permeability antihistamines {diamine oxidase)
MW 111 Stimulation of suppressor Tlymphocytes (Hs) or
Generation of prostaglanding Histamine
Enhancement of (H,) or inhibition (H,) of chemotaxis N-methyl transferase
Elevation of cAMP (Hg} and ¢GMP (H))
Increase mucus production
SRS-A Leukotrienes Contraction of smooth muscle FPL-55712 Arylsulfatagses A and B
(Neutrophils C=5 (8)-0H-6 (R)- Increased vascular permesability Peroxitlases
monocytes S-glutathionyl-7,9- Synergistic with histamine Lipoxygenase
Tmast cells) trans-11,14-¢is- Generation of prostaglandins Peroxides
eicosatetraenoic Vasodepressor
acid Cutaneous
Vasoconstriction (C) .
D=5-(8)-0H-6(R}-8- Vasodilatation (D,E)
cysteinylglyeyl-
7,9-trans-11,14-cig-
eicosatetraenocic acid
E =5(8)-0H-6(R)-S-
cysteinylglyeyl-7,9-
trams, 11,14-cis-
eicosatetraencie aeid
Serotonin 5-OH-tryptamine, .  Contraction of some smooth muscle Hydroxyzine Monoamine oxidase
(platelets) MW 182 Increased vascular permeability Cyproheptadine
lysergic acid
PAF 1-O-alkyl-2- Release of platelet amines Unknown Phospholipases
(neutrophils acetyl-sn-glyceryl-  Platelet aggregation
mohocytes 3-phosphorylcholine Sequestration of platelets
?mast cellg) Vasodepression
Bronchospasm

Increased vasopermeability
Contraction of smooth muscle

Prostaglandins
D, (mast cells)

C-20 fatty acids
Vasodepressor
Eievation of cAMP

E,

Iz "

smooth muscle

Thromboxane A

Many aggregation

Endoperoxides *
{G,, Hyp)

Contract smooth musele, stiraulate platelet

Contract smooth muscle

Synthesis blocked Specific
by nonsteroidal dehydrogenases
anti-inflammatory
agents

Lower cAMP, contract smooth muscle
Elevate ¢cAMF, inhibit platelet aggregation, contract

of cAMP or prostaglandin F 2o the amine inhibits
eosinophil, neutrophil and basophil leukocyte chemo-
taxis (77,78) and activates suppressor lymphocytes
(79), while (perhaps by its ability to augment ¢cGMP
levels) H1 actions enhance cell motility (80). Histamine
also inhibits lymphocyte mediated eytotoxic responses
(81) and activates suppressor cells.

Platelet Activating Factor {PAF)

Platelet activating factor (PAF') was first deseribed as
an activity which was generated during anaphylaxis in
the rabbit (82), capable of aggregating rabbit platelets
and releasing their stored amines., PAF has been
identified structurally as l-alkyl-2-acetyl-sn-glyceryi-
3-phosphorylcholine (21). This mediator is generated by
rabbit basophils after IgE-dependent activation but, in
the human, neutrophilic pelymorphonuclear leukoeytes
appear to be the source (83). In addition, mononuclear

leukoeytes (84), kidney, and spleen (85) can generate
this principle. Direct evidence for PAF generation by
mast cells or during anaphylactic reactions in human
tissue is lacking. In human skin, synthetic PAF has
been demonstrated to cause a wheal-and-flare reaction
when concentrations as low as 107! are injected (86).
Inanimals, PAF causes hypotension, pulmonary mechan-
ical alterations (87), is a cardiac depressant, and induces
the aggregation and sequestration of platelets into Iung
and skin, as well as causing circulating neutropenia and
basopenia (88,89). I vitro destruction of PAF can be
mediated by a specific acetyl hydrolase (90), and by
phospholipases C and D (91).

Serotonin (5-HT)

In the human, serotonin is synthesized by sequential
hydroxyltation and decarboxylation of the amino acid
trytophan {92), and is then degraded in plasma or tissue



THE HUMAN LUNG MAST CELL 263

Table 2. Chemotactic mediators,

Structural
Mediator characteristics Funetion Inhibition Inactivation
ECF-A (mast cell) Val/Ala-Gly-Ser-Glu  Chemotactic attraction and deactivation of Gly-Ser-Glu Amine-peptidase
MW 360-290 gosinophils and neutrophils Val-Gly-Ser Carboxy-peptidase A
ECF-oligopeptides  Peptides, Chemotactie attraction and deactivation of Unknown Unknown
(mast cell) MW 1300-2500 eosinophils
Chemotactic attraction of eosinophils and mone
nuclear leukocyte deactivation of eosinophils
NCF (?mast cell)  Neutral protein, Chemotactic atiraction of deactivation of Unknown Unknown
MW > 750,000 neutrophils
Lipid chemotactic =~ HHT (C,; fatty acid) Chemotactic attraction of neutrophils and ETYA (HHT, Specific
factors (unknown) HETE (Cy, fatty acid) eosinophils HETE, and dehydrogenases

Leukotriene B
Oxidized arachidonic

Chemokinesis of neutrophils
Deactivation of neutrophils

"leukotriene B)
Nonsteroidal anti-

acid inflammatory
agents (HHT)
Histamine B-Imidazolyl- H, chemotactic and chemokinetic activation of H, and H; Histaminase (diamine
(mast cells) ethylamine, eosinophils antihistamines oxidase) or
MW = 11} H, chemotactic and chemokinetic inhibition of Histamine
neutrophils and eosinophils N-methyltransferase
Table 3. Mast cell enzymes and proteoglycans.
Struectural
Mediator characteristies Function Inhibition Inactivation
Proteoglycans
Heparin (preformed) Proteoglycan Anticoagulation Protamine Heparinase
MW 60,000 Antithrombin IIT interaction
Inhibition of complement activation
Liberation of lipoprotein lipase and phospholipase
Enzymes
Arylsulfatase Proteins, Hydrolysis of SRS-A and various sulfate esters PQ,, 80, product, Unknown
(preformed) MW = 100,000 (A) substrate
60,000 (B)
N-Acetyl-p-D- Proteins, Cleavage of glucosamine Product Unknown
glucosaminidase MW =158,000
Tryptase Protein, Proteolysis with tryptic specificity Tryspin inhibitors Unknown
(kaiiikrein) MW = 400,000 Cleavage of kinin from kininogen
anaphylaxis Cleavage of Hageman factor
B-Glucuronidase Protein, Cleavage of glucuronide conjugates Product Unknown
MW = 300,000
Superoxide Protein Cleavage of O, Unknown Unknown
dismutase
Myeloperoxidase Protein Cleavage of Hy0, Unknown Unknown

by monoamine oxidase (93). The human platelet, but not
the mast cell, takes up and stores this amine in its dense
granules from which it may be liberated by the action of
PAF and other secretagogues. The blood platelet eon-
tent of serotonin is 0.1 to 0.2 ng/mL (94). Serotonin is a
vasoconstrictor but is a relatively ineffective agonist
upon human pulmonary vaseulature or bronehial smooth
muscle.

Oxidative Products of Arachidonic Acid

Arachidonic acid, a Cg, fatty acid with four double
bonds, is a prevalent fatty acid in mammalian mem-
brane phospholipids. It is liberated from intact phos-
pholipids by the action of phospholipase A, or from
diacylglyeerol by the action of diacylglyeerol lipase. The
phospholipase A, mediated liberation of arachidonic

acid from phospholipids is inhibited by glucocorticoids
(95), possibly due to steroid induced synthesis of
macrocortin (96), a phospholipase A, inhibitor Once
liberated, the metabolic fate of arachidonic acid is
extremely variable, with many potential end products
known. However, each cell generates only a few selected
metabolites. Two major enzymes, lipoxygenase and
cyclooxygenase, regulate the fate of arachidonic acid.

Cyclooxygenase., Theactionofeyclooxygenase, an
enzyme inhibitable by aspirin and other nonstercidal
anti-inflammatory drugs, generates the cyclic endoper-
oxides, PPG; and PGH, (97). These, in turn, are
substrates for other enzymes which generate pros-
tacyeline (PGL:), PGE,, PGFux, PGD,, HHT, and
thromboxane A2 (98). Many of the cyclooxygenase
products have potent effects on smooth musele and
vaseulature. The eyclic endoperoxides, PGG; and PGH,,
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and thromboxane A2 are vasoconstrictors (99), whereas
PGI; is a potent vascdilater (200). PG, is the major
prostaglandin product in blood vessel walls, and may be
relavent to the development of edema and erythema
direetly and also by its ability to potentiate the edema
and erythema induced by other inflammatory mediators,
such as bradykinin (1017). PGE, and PGD, are potent
molecules capable of inducing edema, erythema, vaso-
depression, vasodilatation, and smooth muscle contrac-
tion (202), however PGE, is a bronchodilator (102).
PGF ., 2 potent bronchoconstrietor, is thought also to
augment vasopermeability.: The isolated ceil of the
human and rat generates only PGD, upon immunologic
stimulation (103), and patients with mastocytosis have
been reported to excrete large quantities of a PGDs
metabolite in their urine (104).

Lipoxygenase. Theinitial product of lipoxygenase
action on arachidonic acid is hydroperoxy eicosatetra-
enoic acid. This is then further metabolized to a series
of monohydroxy eisosatetraenoic acids (HETESs) or to
the leukotrienes (105). Leukotriene C is a glutathionyl
(Gys-Gly-Glu) derivative of leukotriene A, whereas D
lacks the terminal glutamine residue and E the terminal
glyeylglutamyl residues (106,107). All are bronchocon-
strictors in nanogram amounts, and C and D are
systemic vasodepressors (106). Leunkotriene C is a
vasoconstrictor, whereas D is a vasodilator. The sequen-
tial conversion of the lenkotrienes from C to D to E is
likely, with leukotriene D the most potent of the three is
most assay systems. These molecules comprise what
has heretofore been termed slow-reacting substances of
anaphylaxis (SRS-A).

Rat mast cells have been demonstrated to generate
leukotrienes upon caleium ionophore-induced activation,
and release of these molecules induced by immunologic
secretagogues has been demonstrated in the guinea pig
and human lung mast cells. As IgE activation in lung
tissue (40) and cells (87) is associated with SRS-A
production, but SRS-A generation may decrease as
mast cells are purified (2), it is possible that other cell
types also generate these products for export. Inhibi-
tors of lipoxygenase activity (such as ETYA) inhibit
histamine release, and it is conceivable that the major
site of action .of mast cell lipoxygenase products is
within the cell.

Bradykinin

A nonpeptide cleaved from kininogen by kallikrein,
bradykinin has potent activity on smooth muscle and
aiters vascular permeability. Direct evidence for its
generation in human disease, particularly mast cell-
dependent processes, however, is lacking. Bradykinin is
a vasoconstrictor but in humans can cause hypotension
due to peripheral arterial dilatation. In addition, it
increases vascular permeability. Bradykinin is rapidily
inactivated and its half-life in serum is less than 60 sec.
Although the presence of bradykinin in tissue extracts
in disease has been reported, the rapid turnover of this
molecule and the ease of its generation following tissue

extraction make interpretation of these reports difficult.
Chemotactic Mediators

Eosinophil Chemotactic Factor of Anaphy-
laxis (ECF-A)

ECF-A is released immunologically from mast cell-
rich tissues and rat and human mast cells where it ig
stored preformed in the granules (108}, Two tetrapep-
tides of the sequence Val or Ala-Giy-Ser-Glu have heen
extracted from whole human lung and demonstrated to
possess many of the properties of ECF-A (109). ECF-A,
as a less well characterized eosinophilotactic activity
from other sources, is defined as a chemotactic activity
of 300 to 700 daltons, susceptible to proteases, and
which is highly acidic (110). ECF-A attracts eosinophils
into skin in vivo (111) as well as through micropore
chambers in vitro and is a potent chemotactic deactiva-
tor (108). ECF-A increases the number of eosinophil
membrane receptors for CSb and C4 (112).

ECF—Ohgopeptldes

Molecules of 100{)-3000 daitons with chemotactic
actmty for eosmophlls_have been identified preformed
in rat mast cellssand ‘are released from them following
immunologic actwatwn (113). These presumptive pep-
tides are heter ogeneous Molecules of similiar molecular
weight and activity have been extracted from whole
human lung (124). - '

High Moleéulaf;Weight Neutrophil
Chemotactic Factor (HMW-NCF)

A factor of high molecular weight chemotactic for
neutrophils is extracted from human lung tissue (114)
and rat mast cells (775} and is present in serum of
patients after experimental induction of IgE-dependent
bronchospasm (116) or cold urticaria (117). The mole-
cule from the latter source has a mass in excess of
600,000 daltons, a neutral isoelectric point, and in
addition to chemotactic activation, it is able to deacti-
vate neutrophils.

Histamine

Histamine is capable of modulating random and
directed migration of both neutrophils and eosinophils.
At low doses, histamine augments these responses hy
an H1 action, whereas at higher concentrations an
inhibitory H2 effect predominates (77, 80). Histamine is
capable of augmenting eosinophil C3b receptors (112).

Arachidonic Acid Metabolites

Although none of the products generated from
arachidonic acid by mast cells has been shown to be
chemotactic, a wide variety of arachidonate metabaolites



THE HUMAN LUNG MAST CELL 265

are potent chemotactic factors. A eyclooxygenase prod-
uct HHT (718) as well as some lipoxygenase products,
including the family of monohydroxyeicostaetranoic
acids (HETEs) (119), and leukotriene By (120) are
chemotactic for neutrophils, and 5-,8- and 11-HETE
possess activity for eosinophiis.

Other Chemotactic Factors

Uncharacterized lipids (721) and PAF have also been
shown chemotactic for nentrophils.

Active Enzymes

Proteases

The granules of the rat mast cell contain a single-chain
active chymotryptic protease of molecular weight
25,29,000 (122). In human mast cells, no chymotryptic
enzyme is present, and instead a tryptic protease
termed kallikrein has been identified. This enzyme, or
family of enzymes, has been found in populations of
human lung mast cells (123), and in anaphylactic diffu-
sates of human lung (724). Little is known of the
specifieity, inhibitor profile, or total cellular content of
mast cell tryptic proteases. The activation of Hageman
factor and cleavage of bradykinin from kinonogen may
be expected consequence of release of this enzyme.

Other Lysosomal Proteases

Human lung mast cells have been demonstrated to
contain and release arylsulfatase, g-glucuronidase, and
hexosaminidase after immunologic activation (123),
while rat mast cells possess these enzymes, an amino
peptidase and other acid hydrolases (such as B-b-
galactosidase) with specificity for carbohydrate moieties
(125,126), peroxidase (127), superoxide dimutase and
superoxide generating enzymes (128).

Structural Proteoglycans

Rat and human mast cell granules contain proteo-
glycan heparin of high molecular weight (129,130) rich
in N and O sulfated sugars. Heparin release from rat
mast cells have been demonstrated but lags behind that
of histamine due to its relative insolubility (126).
Heparin can inhibit classical and alternative pathways
to complement activation (181,132}, and activates many
enzymes due to its ability to interact with antithrombin
111 (233). In addition, heparin can liberate lipoprotein
lipase and phospholipase (184), and induce lymphocyto-
sis (135).

Role of Mast Celis and Mast Celi
Mediators in Disease

The most compelling evidence for the role of mast
cells and mediators derives from experiments in skin in

which mast cell activation was induced by specific
antigen. The participation of other immunologic classes,
and thus other potential inflammatory pathways, was
excluded in these experiments by use of purified
antigen-specific IgE and passively sensitized non-
allergic hosts (136). Injection of specific antigen to such
passively sensizited hosts induced mast cell activation
and a clinical response deseribed as a dual phase
reaction (186,137). The initial phase is characterized
clinically by a wheal-and-flare beginning in minutes,
persisting several hours, which is histologieally repre-
sented by mast cell degranulation, dermal edema, and
endothelial cell activation. After 4 to 12 hr a large
inflammatory, indurated lesion develops which persists
for 18 to 24 hr and which is represented histologically by
edema, infiltration of the dermis by neutrophils,
eosinophils, basophils, lymphocytes, and mononuclear
leukoeytes, and in some instances hemorrhage, blood
vessel wall damage, and fibrin deposition of sufficient
severity to warrant the diagnosis of vasculitis (136). The
mediators responsible for these pathophysiologic mani-
festations have not vet been identified; however, they
can be surmised by their known effects as isolated
mediators. Thus, the initial phase is most likely due to
the concerted action of the vasoactive mediators. The
effect of these mediators to induce edema and alter
blood flow may also permit the localization in tissue of
immunoglobulin, complement, and the proteins of the
clotting, fibrinolytic, and kinin generating pathways.
These proteins acting together with the chemotactic
factors may well be responsible for the later inflam-
matory phase seen in the skin. Vasculitis may well
reflect the hydrolytic action of infiltrating leukocyte
lysosomal enzymes, but may also be due to direct action
of the mast cell acid hydrolases.

No studies of such elegance, employing lung tissues,
have been reported. However, early and late broncho-
spastic responges to antigen have been recorded in
humans. As both pulmonary responses may be inhibited
by the mast cell active agent disodium cromoglycate
(138} while only the latter is inhibited by corticosteroids
it is reasonable to suggest similiar mast cell dependent
inflammatory pathophysiologic alterations can occur in
lung.

Mast Cells and Mediators
in Pulmonary Responses
to Toxic Agents

There is little direct evidence implicating or ruling
out the participation of mast cells and/or mediators in
the response of the lung to toxic materials, save for the
extensive body of knowledge concerning IgE-dependent
responses to airborne allergens. More narrowly defined
toxie exposure may however involve the mast cell and its
vaspactive, smooth muscle reactive, chemotactie and
enzymatic mediators. The presence of mast cells free in
the brenchial lumen and in the pulmonary epithelium
(see above} serve to place the mast cell at the host-
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environment interface. Whether the role of the mast
cell is harmful or beneficial may reflect the intensity,
duration or character of the stimulus, the presence and
nature of underlying systemic or pulmonary disease
(i.e., immotile cilia syndromes, cystic fibrosis, o;-
antitrypsin deficiency, ete.), individual responsiveness
to individual mediators as well as differences in degrada-
tion of mediators and/or recruitment of alternate pro- or
anti-inflammatory systems.

It is known that NO, exposure (1 ppm for 2 hr or 0.5
ppm for 4 hr) induces mast cell destruction in rats (35).
Oxygen toxicity is exacerbated by histamine and de-
creased by antihistamine (139), a fact which may reflect
direct mast cell participation in O, toxicity. In addition,
lipid peroxides, known to be generated during exposure
to high partial pressures of O,, may enhance mast cell
mediator release. Studies of the histopathologic alter-
ations in lung consequent to (. toxicity fail to discuss
mast cells. This may reflect the relative paucity of
epithelial mast cells but may also indicate that mast
cells are degranulated, and this no longer visible,
following induction of O, toxicity. Rat mast cells and
human lung tissue also can generate oxygen radicals
during IgE-dependent mast cell activation, while the
mast cell also possesses superoxide dismutase and
peroxidase, enzymes thought capable of blunting oxy-
gen induced toxicity.

It is also possible that the mast cell, present at the
host-environment interface may provide a “detoxifica-
tion” role. Such a role is suggested by the long life of
this cell, its highly charged granule core, its content of
active enzymes, its known capacity to ingest particulate
materials by phagocytosis or pinocytosis and the pro-
longed presence of indigestible materials in mast cell
granules (i.e., ThOy) (17,140). Moreover, the ability of
the mast cell mediators to alter local blood flow, to alter
pulmonary airflow by affecting airway diameter and
mechanics, to induce mucouns produetion, and to stimu-
late irritant receptors eould provide a mechanism for
preventing and/or removing inhaled toxic materials
before they can impact upon the lung itself. The
recruitment of plasma systems and leukocytes also
potentially benefit clearance and/or localization of toxic
inputs. When toxic exposures are excessive then mast
cell mediated protection may he overcome, or excessive
mast cell activation may provide edematous, exudative
and inflammatory alterations harmful to the host.

Dr. Wasserman is the recipient of an Allergic Disease Academic
Award No. (0431.
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